Oligophosphan-Liganden, XXVIII¹⁾

C-H-Aktivierung von Benzol und Alkylaromaten durch (Chelatphosphan)ruthenium(0)-Fragmente

Lutz Dahlenburg* und Kay-Michael Frosin

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13 (FRG)

Eingegangen am 3. November 1987

Die Reduktion von RuCl₂(pp₃) [pp₃ = P(CH₂CH₂CH₂PMe₂)₃] mit Natriumamalgam in Benzol und Toluol sowie in o- bzw. m-Xylol ergab die Arylruthenium-Derivate RuH(C₆H₃)(pp₃) (1), RuH(C₆H₄Me-3)(pp₃) (2), RuH(C₆H₃Me₂-3,4)(pp₃) (3) und Ru-H(C₆H₃Me₂-3,5)(pp₃) (4). Komplex 2 wurde als Gemisch zweier Isomere erhalten, in denen der meta-Methylsubstituent Positionen besetzt, die von der Ru-H-Einheit abgewandt (2a) oder ihr zugewandt (2b) sind. Die Molekülstrukturen von 2a, 2b, 3 und 4 wurden röntgenographisch ermittelt. Oligophosphane Ligands, XXVIII¹⁾. - C+H Activation of Benzene and Alkylated Arenes by (Chelate-phosphane)ruthenium(0) Fragments

The reduction of RuCl₂(p₃) [pp₃ = P(CH₂CH₂CH₂PMe₂)₃] with sodium amalgam in benzene and toluene as well as in o- and *m*-xylene, respectively, yielded the arylruthenium derivatives RuH(C₆H₃)(pp₃) (1), RuH(C₆H₄Me-3)(pp₃) (2), RuH(C₆H₃Me₂-3,4)(pp₃) (3), and RuH(C₆H₃Me₂-3,5)(pp₃) (4). Complex 2 was isolated as a mixture of two isomers containing the *meta*-methyl substituent oriented away from (2a), or in direction of (2b), the Ru-H linkage. The molecular structures of 2a, 2b, 3, and 4 were determined by X-ray diffraction.

Koordinativ ungesättigte Übergangsmetall/Ligand-Fragmente d⁸-ML₄ bringen für die Spaltung von C-H-Bindungen freier Kohlenwasserstoffe elektronisch günstige Voraussetzungen dann mit, wenn sie in *cis*-ungesättigter Form vorliegen²). Eine solche Koordinationsgeometrie zeichnet z. B. den gewinkelten Singulett-Grundzustand der 16e-Teilchen d⁸-(C₅R₅)-M-L aus³), welche mit Rhodium(I) und Iridium(I) als Zentralatomen und Phosphanen oder CO als Stützliganden Arene, Alkene und Alkane unter milden Bedingungen oxidativ addieren⁴). Die isoelektronischen Ruthenium(0)- und Osmium(0)-Fragmente (C₆R₆)-M-L (R = H, Me) sind ebenso zur Insertion in aromatische und aliphatische C-H-Bindungen befähigt⁵⁻⁷).

Da nun mehrzähnige Chelatliganden mit tripodalem Zuschnitt einer 16e-Spezies d⁸-ML₄ gleichfalls eine gewinkelte cis-ungesättigte Struktur aufzwingen, haben in jüngster Zeit auch Rhodium- und Iridiumkomplexe mit N(CH₂, CH₂PPh₂)₃-^{8,9}, P(CH₂CH₂PPh₂)₃-¹⁰ und Tris(pyrazolyl)borato¹¹⁾-Koordination Eingang in die C-H-Aktivierung gefunden. Wir selbst haben zu diesem Zwecke die tripodalen Tetrakisphosphane P(CH2CH2CH2PMe2)312) und $P(C_6H_4PMe_2-2)_3^{13}$ dargestellt und gezeigt, daß das auf photochemischem Wege aus dem Dihydridokomplex RuH₂[P- $(CH_2CH_2CH_2PMe_2)_3$ erzeugbare Metall(0)-Fragment "Ru(pp₃)" Benzol unter Bildung des Hydridophenyl-Komplexes RuH(C₆H₅)(pp₃) spaltet¹). Das reaktive 16e-Teilchen läßt sich auch durch Reduktion von RuCl₂(pp₃) mit Lithiumsand in Tetrahydrofuran sowie in Cyclopenten erzeugen und reagiert dann mit dem betreffenden Lösemittel unter Spaltung einer dem THF-Sauerstoffatom benachbarten Methylengruppe bzw. unter oxidativer Addition einer vinylischen C-H-Bindung¹⁴⁾.

Um nun die Reaktivität des Komplexfragmentes gegenüber unterschiedlichen C-H-Gruppierungen kennenzulernen und um auf diese Weise Einblick in die Selektivität der Ru(pp₃)/C-H-Insertion zu erhalten, haben wir das 16e-Teilchen durch Alkalimetall-Reduktion in einer Reihe weiterer Solventien freigesetzt und berichten an dieser Stelle über die mit Benzol, Toluol, Xylolen und Mesitylen als Reaktionspartnern erhaltenen Ergebnisse.

Präparative Resultate und Diskussion

Durch Reduktion von RuCl₂(pp₃) mit Natriumamalgam in Benzol bei 80°C erhielten wir die bereits bekannte Phenylruthenium-Verbindung $RuH(C_6H_5)(pp_3)$ (1). Wurde die Reaktion in Toluol geführt, so entstand ein Gemisch zweier Tolylkomplexe im Verhältnis 70:30 - 50:50, die durch Röntgenstrukturanalyse (s.u.) als diastereomere meta-C-H-Spaltungsprodukte RuH(C₆H₄Me-3)(pp₃) 2a (Tolyl- CH_3 -Gruppe vom Ru-H-Fragment abgewandt; Abb. 1) und 2b (Ring-Substituent der Ru-H-Einheit zugewandt; Abb. 2) identifiziert wurden. In o-Xylol als Reaktionsmedium bildete sich das Xylyl-Derivat RuH(C₆H₃Me₂-3,4)(pp₃) (3), für welches die Strukturbestimmung eine Orientierung des Arylliganden gemäß 2a ergab (Abb. 3). Ein mit 2b vergleichbares Isomer wurde nicht beobachtet. Mit m-Xylol als Reaktionspartner entstand die gleichfalls strukturanalytisch belegte Xylyl-Verbindung $RuH(C_6H_3Me_2-3,5)(pp_3)$ (4) (Abb. 4). Bei der Reduktion des Dichlorokomplexes in p-Xylol oder Mesitylen erfolgte keine oxidative Addition von Solvens-C-H-Bindungen. - Tab. 1 faßt die spektroskopischen Daten von 2-4 zusammen. Die entsprechenden Parameter von 1 wurden bereits mitgeteilt¹⁵.

Chem. Ber. 121, 865-869 (1988) © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1988 0009-2940/88/0505-0865 \$ 02.50/0

RuH(C ₆ H ₅)(pp ₃)	RuH(C ₆ H ₄ Me-3)(pp ₃)
1	2
RuH(C ₆ H ₃ Me ₂ -3,4)(pp ₃)	$RuH(C_6H_3Me_2-3,5)(pp_3)$

$pp_3 = P(CH_2CH_2CH_2PMe_2)_3$

Das Ausbleiben einer Umsetzung mit Mesitylen und p-Xylol entspricht dem Befund, daß in keiner der die Arylhydride 2-4 enthaltenen Reaktionslösungen o- oder Benzyl-C-H-Spaltungsprodukte nachzuweisen waren. Da diese Reaktionsmischungen in Anbetracht der Reduktionsbedingungen (20 h bei 80°C) als Gleichgewichtsgemische anzusehen sind, gehören 2-Methylaryl- sowie Benzylmetall-Derivate offenbar nicht zu den thermodynamisch günstigen Produkten der Systeme Ru(pp₃)/Toluol und Ru(pp₃)/Xylol. Wir vermuten, daß die Instabilität solcher Komplexe die übergroße sterische Hinderung zwischen dem (Chelatphosphan)ruthenium-Fragment einerseits und einem Benzyloder o-Alkylaryl-Liganden andererseits reflektiert und verweisen in diesem Zusammenhang darauf, daß nach den Ergebnissen der Strukturanalysen von 1^{1} und 2-4 (s.u.) selbst bei einer weitgehend coplanaren Anordnung des aromatischen Ringes zu der durch die trans-Einheiten H-Ru- $P(CH_2-)Me_2$ und $Aryl-Ru-P(CH_2-)_3$ festgelegten Koordinationsebene mehrere relativ kurze PMe2---Aryl-Kontaktabstände auftreten. Ganz allgemein dürfte die ein stabiles

Tab. 1. v(RuH)-Wellenzahlen (cm⁻¹) und ausgewählte NMR-Daten von $2-4^{a}$

m-Tolylkomplexe 2a/2b

IR: 1821. $-{}^{1}$ H: $\delta = 7.85$, 7.75 (je br. m, je 1 H, 2,6-H), 7.13, 7.05 (virt. t. u. br. dd, 1 H, 5-H von **a** u. **b**), 6.94 (d, J = 7.2 Hz, 1 H, 4-H), 2.46, 2.40 (je s, 3 H, Ar-CH₃ von **a** u. **b**), -8.94, -8.97 [je ddt, trans-J(PH) = 84.0 u. 83.7, cis-J(PH) = 20.5 u. 20.1, cis-J(P_2H) = 27.9 u. 28.5 Hz, 1 H, RuH von **a** u. **b**]. $-{}^{31}$ P: je 1 AM₂X-Signal: $\delta(P_A) = 3.35$, $\delta(P_M) = -0.54$, $\delta(P_X) = -9.44$, $J(P_AP_M) = 33.5$, $J(P_AP_X) = J(P_MP_X) = 24.1$ Hz; $\delta(P_A) = 3.28$, $\delta(P_M) = -0.57$, $\delta(P_X) = -9.61$, $J(P_AP_M) = 33.7$, $J(P_AP_X) = J(P_MP_X) = 24.0$ Hz

o-Xylylkomplex 3

IR: 1810. $-{}^{1}$ H: $\delta = 7.70$, 7.60 (je br. m, je 1 H, 2,6-H), 6.94 (d, J = 7.3 Hz, 1 H, 5-H), 2.36, 2.27 (je s, je 3 H, je Aryl-CH₃), -8.97 [ddt, *trans-J*(PH) = 83.8, *cis-J*(PH) = 20.0, *cis-J*(P₂H) = 28.9 Hz]. $-{}^{13}$ C: $\delta = 167.3$ [ddt, J(PC) = 54.3 u. 10.1, J(P₂C) = 16.9 Hz, C-1], 152.8, 148.7 (je br. s, C-2,6), 131.5, 127.0 (je s, C-3,4), 126.9 (s, C-5), 21.1, 20.2 (je s, je Ar-CH₃). $-{}^{31}$ P: AM₂X-Signal: δ (P_A) = 3.45, δ (P_M) = -0.52, δ (P_X) = -9.32, J(P_AP_M) = 34.0, J(P_AP_X) = J(P_MP_X) = 24.0 Hz.

m-Xylylkomplex 4

IR: 1812. $-{}^{1}$ H: $\delta = 7.57$ (br. s, 2 H, 2,6-H), 6.64 (2, 1 H, 4-H), 2.40 (s, 6 H, Aryl-CH₃), -9.01 [ddt, trans-J(PH) = 84.1, cis-J(PH) = 20.5, cis-J(P₂H) = 28.6 Hz]. $-{}^{13}$ C: $\delta = 170$ (m, unaufgelöst, C-1), 149.2 (br. s, C-2,6), 132.4 (s, C-3,5), 122.3 (s, C-4), 23.6, 23.1 (je s, je Ar-CH₃). $-{}^{31}$ P: AM₂X-Signal: $\delta(P_A) = 3.21$, $\delta(P_M) = 0.58$, $\delta(P_X) = -9.50$, $J(P_AP_M) = 33.8$, $J(P_AP_X) = J(P_MP_X) = 24.0$ Hz

^{a)} IR-Spektren in Nujol, NMR-Spektren in C₆D₆; P_A: P(CH₂-)₃ trans zu Aryl, P_M: trans-ständige Me₂P-Kerne, P_X: Me₂P-Kern trans zu H; Zuordnung der ¹³C-Signale durch Aufnahme ¹H- und ³¹P-ge- und entkoppelter Spektren sowie durch "attached proton test"¹⁶. o-Methylaryl- oder Benzyl-C-H-Spaltungsprodukt ausschließende thermodynamische Selektivität energiereicher Komplexfragmente sterisch gesteuert sein, denn nach den bisherigen Erfahrungen werden derartige Derivate in äquilibrierten $L_xM/Alkylaren-Mischungen$ nur dann angetroffen, wenn L_xM ein Fragment mit weitgehend exponiertem Metallatom darstellt. Repräsentative Beispiele sind (Cy₂PCH₂CH₂PCy₂)Pt¹⁷) (Cy = cyclo-C₆H₁₁) und (C₅H₅)₂W¹⁸). Gehäufte Komplexrümpfe, z. B. Fe-(Me₂PCH₂CH₂PMe₂)₂^{19,20}, Os(PMe₃)₂[P(OMe)₃]₂²¹, (C₅-Me₅)Rh(PMe₃)²²) oder (C₅H₅)Ru(C₆H₄PR₂-2)²³), ergeben

Abb. 2. Molekülgeometrie von 2b

Abb. 3. Struktur von 3 im Kristall

demgegenüber stabile *m*- und *p*-C-H-Spaltungsprodukte. Mit Toluol werden dabei im Regelfall Gleichgewichtsgemische erhalten, in denen die *p*-Komponente entweder in vergleichbarer Konzentration angetroffen wird ^{19,21-23)} oder sogar deutlich überwiegt^{18b)}. Ein wie 2 ausschließlich aus dem *m*-C-H-Additionsprodukt aufgebautes Derivat wurde bislang nicht isoliert. Die bevorzugte Bildung von Übergangsmetall-substituierten Arenen, die den Orientierungsregeln der elektrophilen Zweitsubstitution am Benzolkern zuwiderläuft, eröffnet die Möglichkeit, Aromat-Kohlenwasserstoffe durch oxidative Addition in ungewöhnlicher Ringposition auf direktem Wege zu funktionalisieren.

Molekülstrukturen der Arylkomplexe 2-4

Alle in dieser Arbeit erstmals beschriebenen Arylruthenium-Verbindungen wurden auch röntgenographisch gesichert (Abb. 1–4). Dabei wurden die diastereomeren Formen 2a (Abb. 1) und 2b (Abb. 2) des *m*-Tolylkomplexes 2 durch manuelle Auslese der triklinen (2a) und monoklinen (2b) Einkristalle getrennt, Tab. 2 gibt eine Übersicht über repräsentative Abstände und Winkel.

Abb. 4. Perspektivische Darstellung von 4

Die gemessenen Bindungslängen Ru – P (230.0 – 232.3 pm für die zueinander trans-ständigen Metall-P-Bindungen, 228.5-229.4 pm für den Abstand des trans zum Arylliganden befindlichen Brücken-P-Atoms vom Zentralmetall und 233.6-234.6 pm für die Ru-P-Bindung im trans- $Me_2P-Ru-H$ -Fragment) und Ru-C, 217.0-217.7 pm, befinden sich in guter Übereinstimmung mit den an der Phenylruthenium-Verbindung $1^{(1)}$ beobachteten Parametern. Die Neigungswinkel zwischen den "besten" Ebenen durch die Ring-C-Atome C1-C6 einerseits und Ru, P1, P2 und C1 and ererseits variieren zwischen etwa 14° (2b) und 22° (4). Ähnlich wie bei 1^{1} herrschen auch in den Molekülen 2-4nichtbindende Kontakte zwischen den ortho-C-Atomen der Arylliganden und den zueinander trans-ständigen Me₂P-Endgruppen des Chelatphosphans, welche mit etwa 323 pm (C6...C21 in 4) - 331 pm (C2...C20 in 2b) gegenüber dem Aryl...CH₃-van-der-Waals-Abstand von ca. 370 pm²⁴⁾ deutlich verengt sind. Der sich darin ausdrückende Platzmangel in den Koordinationssphären der Verbindungen dürfte dazu

Tab. 2. Ausgewählte Bindungslängen (pm) und -winkel (°) von 2-4

Länge	Winkel					
	Ru	P2	P3	P4	C16	н
Komplex 2a						
228.86(8)	P1	92.65(4)	88.91(4)	94.26(4)	171.67(9)	85(1
233.97(9)	P2		98.03(4)	103.90(4)	95,22(9)	174(1
230.98(11)	Р3			157.65(5)	92.86(9)	76(1
230.57(11)	P4				81.22(9)	82(1
217.1(3)	C1					87(1
158(3)	н					
Komplex 2b						
228.7(3)	P1	93.4(1)	89.3(1)	95.0(1)	169.5(2)	85 (2
234.6(2)	₽2		96.2(1)	102.0(1)	97.0(2)	178(2
230.0(3)	P3			161.0(1)	90.5(2)	84(2
231.1(2)	P4				82.0(2)	78(2
217.7(6)	C1					85(2)
164(6)	н					
Komplex 3						
228.5(1)	P1	93.06(6)	88.37(7)	94.45(6)	170.8(1)	
233.8(1)	P2		97.37(7)	102.61(7)	96.0(1)	
230.1(1)	P3			159,63(7)	92.4(1)	
231.1(1)	P4				81.6(1)	
217.0(3)	C1					
Komplex 4						
229.44(8)	P 1	93.12(5)	89.13(4)	94.41(5)	171.68(8)	83(1)
233.60(10)	₽2		97.64(4)	102.66(4)	94.77(7)	174(1)
231.18(9)	P3			159.15(5)	92.40(7)	78(1)
232.33(9)	P4				81.32(7)	82(1)
217.1(2)	C1					89(1)

Tab. 3. Kristallstrukturdaten

Komplex	2a	2Ъ	3	4
Formel	C22 ^H 44 ^P 4 ^{Ru}	C22H44P4Ru	C ₂₃ H ₄₆ P ₄ Ru	C ₂₃ ^H 46 ^P 4 ^{Ru}
Molmasse	533.54	533.54	547.57	547.57
KristSyst.	triklin	monoklin	monoklin	triklin
Raumgruppe	P1	P21/n	P21/c	P1
a (pm)	992.7(2)	1036.9(8)	964.8(6)	936.9(2)
b (pm)	994.6(2)	1488.0(11)	1461.6(7)	1040.6(4)
c (pm)	1402.9(3)	1741.4(18)	1946.0(7)	1482.8(4)
α (⁰)	82.33(2)	90	90	73.46(2)
β (⁰)	74.93(1)	104.07(7)	96.93(3)	77.80(2)
χr (^ο)	80.27(1)	90	90	83.18(3)
$v (10^6 \text{ pm}^3)$	1312.4(5)	2607(4)	2724(2)	1351.9(7)
Z	2	4	4	2
$D_{c} (gcm^{-3})$	1.351	1.359	1.335	1.345
$\mu(MoK_{\alpha})$ (cm ⁻¹)	7.6	7.6	7.3	7.4
Datensammlung	0/20	ω	0/20	0/20
20 _{max} (⁰)	55	45	65	65
gesammelte Daten	6407	3798	10784	10118
davon unabhängig	6050	3403	9931	9602
davon signifikant	5060	2788	7285	8653
		- (F _o >	45) -	
Korrekturen	- LP-korrig	iert, keine	Absorption	skorrektur -
Strukturlösung	- Patterson	- und Diffe	renz-Fourier	-Synthesen -
Verfeinerung	- Vollmatri:	x, anisotro	pe Temperatu	rfaktoren,
	С- <u>н</u> in be:	rechneten Po	sitionen (C-	H = 96 pm)
	mit gemein	nsamem isotro	open Verhalt	en; Hydrid-H
	von 3 nich	nt lokalisie:	rt, bei 2a, 1	b und 4 aber
	in verfein	nerten Lagen	; Einheitsge	wichte -
Parameter	252	252	257	261
R	0.029	0.033	0.045	0.029
R	0.039	0.038	0.046	0.031
Restelektronen-	max. +0.6	max. +0.4	max. +1.3	max. +0.5
dichte (e/10 ⁶ pm ³)	min0.4	min0.3	min0.9	min1.2

beitragen, daß die Arene *p*-Xylol und Mesitylen, die mit dem Metall/Ligand-Fragment Ru(pp₃) entweder *ortho*-CH₃-substituierte Arylverbindungen oder aber Ruthenium-Derivate mit sperriger Benzyl-Koordination ergeben müßten, die oxidative C-H-Addition an das pp₃-gestützte Ru(0)-Zentrum nicht eingehen.

Für die finanzielle Unterstützung der Arbeit sei der Deutschen Forschungsgemeinschaft, der Stiftung Volkswagenwerk und dem Verband der Chemischen Industrie herzlich gedankt. Den Firmen Hoechst, Frankfurt, und Degussa, Hanau, gilt unser Dank für großzügige Chemikalienspenden.

Experimenteller Teil

Alle Arbeiten wurden unter Stickstoff durchgeführt. Die benutzten Lösemittel waren getrocknet und mit N₂ gesättigt. – IR-Spektren: Gitterspektrometer Perkin-Elmer 325. – NMR-Daten: Bruker-Geräte AM 360 (360.13 MHz bei ¹H, 145.79 MHz bei ³¹P und 90.56 MHz bei ¹³C) und MSL 300 (300.13 MHz bei ¹H), Standards TMS intern bzw. H₃PO₄ extern. Positive δ -Werte zeigen Tieffeld-Verschiebungen an. Probenkopftemperatur ca. 35°C. – RuCl₂(pp₃) wurde aus RuCl₂(PPh₃)₃ durch Substitution dargestellt²⁵.

Hydridophenyl[tris[3-(dimethylphosphino)propyl]phosphan]ruthenium(II) (1): Die Lösung von 1.00 g (1.95 mmol) RuCl₂(pp₃) in100 ml Benzol wurde mit 23 g 1proz. Natriumamalgam (ca. 10mmol Na) versetzt und 20 h bei 80°C gerührt. Die dabei gebildetegelbliche Lösung wurde vom Amalgam dekantiert und filtriert. Dernach Einengen des Filtrats zur Trockne verbleibende Rückstandwurde mit 100 ml Hexan 3 h digeriert. Die filtrierte Hexanlösungwurde erneut zur Trockne eingedampft und der daraufhin erhalteneRückstand nochmals mit Hexan (30 ml) ausgerührt. Nach Filtrierenund Entfernen des Lösemittels i. Vak. wurde ein letztes Mal mit 30ml Hexan extrahiert. Aus dem filtrierten Extrakt wurden durchEntfernen des Hexans i. Vak. 0.45 g (44%) 1 als blaßgelbes Pulver $isoliert. <math>C_{21}H_{42}P_4Ru$ (519.5) Ber. C 48.55 H 8.15

Gef. C 48.5 H 8.3

Tab. 4. Lageparameter und äquivalente isotrope Temperaturfaktoren $U_{\bar{a}q}^{a}$ von 2a

Atom	x/a	у/ъ	z/c	Üäg
Ru	0.14609(2)	0.22362(2)	0.27500(2)	0.0355(2)
P1	0.33903(8)	0.05899(8)	0.24352(6)	0.0453(7)
P2	0.27664(8)	0.39959(8)	0.19592(6)	0.0486(7)
P3	0.17764(9)	0.22502(9)	0.43227(6)	0.0516(7)
P4	0.05219(8)	0.16850(8)	0.15362(6)	0.0507(7)
C1	-0.0549(3)	0.3555(3)	0.3082(2)	0.048(3)
C2	-0.0844(3)	0.4859(3)	0.2585(2)	0.055(3)
C3	-0.2167(4)	0.5660(4)	0.2732(3)	0.063(4)
C4	-0.3284(4)	0.5169(4)	0.3420(3)	0.068(4)
C5	-0.3061(3)	0.3915(4)	0.3938(3)	0.065(4)
C6	-0.1732(3)	0.3131(3)	0.3768(3)	0.056(3)
C7 ·	-0.2360(5)	0.7054(4)	0.2160(4)	0.096(6)
C8	0.5186(3)	0.1047(4)	0.2157(3)	0.061(3)
C9	0.5419(3)	0.2298(4)	0.1397(3)	0.064(4)
C10	0.4686(3)	0.3646(4)	0.1821(3)	0.063(4)
C11	0.3501(4)	-0.0794(3)	0.3435/3(0.061(3)
C12	0.3524(4)	-0.0330(4)	0.4419(3)	0.072(4)
C13	0.2186(4)	0.0532(4)	0.4936(2)	0.067(4)
C14	0.3683(4)	-0.0453(4)	0.1381(3)	0.066(4)
C15	0.2377(4)	-0.0759(4)	0.1134(3)	0.079(4)
C16	0.1608(4)	0.0494(4)	0.0653(3)	0.074(4)
C17	0.2455(4)	0.5642(4)	0.2507(3)	0.082(5)
C18	0.2777(4)	0.4643(4)	0.0668(3)	0.075(4)
C19	0.3149(4)	0.3074(5)	0.4567(3)	0.092(5)
C20	0.0284(4)	0.2904(4)	0.5295(3)	0.079(5)
C21	-0.0208(4)	0.2962(4)	0.0663(3)	0.081(5)
C22	-0.0993(4)	0.0772(4)	0.2031(3)	0.078(4)
н	0.066(3)	0.104(3)	0.338(2)	0.056(8)

^{a)} $U_{iaq} = (U_{11} + U_{22} + U_{33})/3$; für H ist der isotrope Temperaturfaktor angegeben.

Tab. 5. Lageparameter und äquivalente isotrope Temperaturfaktoren $U_{\bar{a}q}^{a}$ von **2b**

Atom	x/a	y/b	z/c	^U äg
Ru	0.57969(4)	0.41326(3)	0.77032(3)	0.0319(4)
P1	0.7019(1)	0.4536(1)	0,6827(1)	0.040(1)
P2	0.4746(1)	0.5536(1)	0.7638(1)	0.045(1)
P3	0.7578(1)	0.4489(1)	0.8730(1)	0.040(1)
P4	0.4258(1)	0.3302(1)	0.6796(1)	0.039(1)
C1	0.4792(5)	0.3507(4)	0.8528(3)	0.039(5)
C2	0.5187(5)	0.2670(4)	0,8885(3)	0.043(6)
C3	0.4551(6)	0.2200(4)	0,9376(3)	0.049(6)
C4	0.3419(6)	0.2579(5)	0.9536(4)	0.059(7)
C5	0.2962(6)	0.3397(5)	0.9191(4)	0.058(7)
C6	0.3626(5)	0.3832(4)	0.8700(3)	0.048(6)
C7	0.5022(7)	0.1285(5)	0.9698(4)	0.071(8)
C8	0.7290(6)	0.5735(4)	0.6636(4)	0.058(7)
C9	0.6030(7)	0.6300(4)	0.6499(4)	0.063(8)
C10	0.5582(6)	0.6488(4)	0,7259(4)	0.057(7)
C11	0.8746(5)	0.4129(4)	0.7064(3)	0.053(6)
C12	0.9613(5)	0.4403(5)	0.7876(4)	0.059(7)
C1 3	0.9164(5)	0.4052(4)	0.8598(3)	0.049(6)
C14	0.6492(6)	0.4166(4)	0.5781(3)	0.053(6)
C15	0.5743(6)	0.3266(4)	0.5641(3)	0.052(6)
C16	0.4326(6)	0.3340(4)	0,5754(3)	0.052(7)
C17	0.4520(7)	0.6972(4)	0.8553(4)	0.066(8)
C18	0.3064(6)	0.5710(4)	0.7001(4)	0.064(8)
C19	0.8095(6)	0.5655(4)	0,9001(4)	0.051(7)
C20	0.7604(6)	0.4064(5)	0.9721(3)	0.059(7)
C21	0.2462(5)	0.4311(4)	0.6673(4)	0.057(7)
C22	0.4403(6)	0.2078(4)	0.6956(3)	0.048(6)
н	0.654(5)	0.316(4)	0.772(3)	0.07(2)

^{a)} Vgl. Legende zu Tab. 4.

Tab. 6. Lageparameter und äquivalente isotrope Temperaturfaktoren $U_{\bar{a}q}^{a}$ von 3

Atom	x/a	y/b	z/c	Uäg
Ru	0.46820(3)	0.21809(2)	1.08321(1)	0.0381(2)
P1	0.31804(9)	0.25726(7)	0.98788(4)	0.0441(7)
P2	0.38565(11)	0.33309(8)	1.15120(5)	0.0524(9)
P3	0.31279(10)	0.10593(8)	1.10610(6)	0.0566(10)
P4	0.65993(9)	0.28626(7)	1.04389(5)	0.0479(8)
C1	0.6276(4)	0.1675(3)	1.1623(2)	0.048(3)
C2	0.6904(4)	0.2204(3)	1.2187(2)	0.056(4)
C3	0.8050(4)	0.1933(3)	1.2650(2)	0.059(4)
C4	0.8649(4)	0.1084(3)	1.2578(2)	0.059(4)
C5	0.8056(4)	0.0536(3)	1.2049(2)	0.058(4)
C6	0.6920(4)	0.0829(3)	1.1581(2)	0.054(4)
C7	0.8660(5)	0.2608(4)	1.3204(2)	0.092(7)
C8	0.9922(4)	0.0750(4)	1.3053(2)	0.078(5)
C9	0.1586(4)	0.3224(3)	0.9976(2)	0.056(4)
C10	0.1812(4)	0.4042(3)	1.0462(2)	0.065(4)
C11	0.2083(4)	0.3780(3)	1.1230(2)	0.068(5)
C12	0.2429(4)	0.1610(3)	0.9345(2)	0.058(4)
C1 3	0.1605(5)	0.0909(3)	0.9713(2)	0.071(5)
C14	0.2418(5)	0.0395(3)	1.0300(3)	0.074(5)
C15	0.3804(4)	0.3274(3)	0.9187(2)	0.061(4)
C16	0.5307(4)	0,3122(3)	0.9069(2)	0.063(4)
C17	0.6334(4)	0.3546(3)	0.9641(2)	0.063(4)
C18	0.3619(5)	0.3098(4)	1.2424(2)	0.079(6)
C19	0.4768(5)	0.4438(3)	1.1622(2)	0.072(5)
C20	0.1476(5)	0.1301(4)	1.1411(3)	0.094(7)
C21	0.3755(6)	0.0116(4)	1.1618(4)	0.129(9)
C22	0.7869(4)	0.2042(3)	1.0191(3)	0.071(5)
C2 3	0.7810(5)	0.3646(4)	1.0952(3)	0.079(5)

^{a)} Vgl. Legende zu Tab. 4.

Hydrido(3-methylphenyl)[tris[3-(dimethylphosphino)propyl]-phosphan]ruthenium(II) (2): Die Lösung von 0.60 g (1.17 mmol) RuCl₂(pp₃) in 100 ml Toluol wurde mit 9 g 1proz. Natriumamalgam (ca. 4 mmol Na) versetzt und 20 h bei 80 °C gerührt. Die gebildete rötliche Lösung wurde vom Amalgam durch Dekantieren und Filtrieren getrennt und wie oben beschrieben aufgearbeitet. Ausb. 0.30 g (48%) hellgelbes 2 als Gemisch der Isomeren 2a und 2b, welches je mol Komplex noch 0.5 mol Hexan enthielt.

 $\begin{array}{c} C_{22}H_{44}P_4Ru \cdot 0.5 \ C_6H_{14} \ (576.6) & \mbox{Ber. C} 52.07 \ H \ 8.91 \\ & \mbox{Gef. C} 52.3 \ H \ 8.8 \end{array}$

(3,4-Dimethylphenyl)hydrido[tris[3-(dimethylphosphino)propyl]phosphan]ruthenium(II) (3): Die Darstellung erfolgte aus 0.95 g (1.85 mmol) RuCl₂(pp₃) und 50 g 0.9proz. Natriumamalgam (ca. 19 mmol Na) in 100 ml o-Xylol durch 20stdg. Rühren bei 80°C. Nach Aufarbeitung (vgl. 1) wurden 0.37 g (37%) des Komplexes 3 als hellgelbes Pulver isoliert.

> C23H46P4Ru (547.6) Ber. C 50.45 H 8.47 Gef. C 50.5 H 8.9

(3,5-Dimethylphenyl)hydrido [tris [3-(dimethylphosphino)propyl/phosphan/ruthenium(II) (4): Der Komplex wurde in Analogie zu 1-3 durch Reduktion von 0.90 g (1.75 mmol) RuCl₂(pp₃) mit 36 g 0.9proz. Natriumamalgam (ca. 14 mmol Na) in 100 ml m-Xylol (20 h, 80°C) gewonnen, Ausb. 0.35 g (37%) gelber Feststoff.

$$\begin{array}{cccc} C_{23}H_{46}P_4Ru \ (547.6) & \text{Ber. C} \ 50.45 \ H \ 8.47 \\ & \text{Gef. C} \ 51.1 \ H \ 8.5 \end{array}$$

Röntgenstrukturanalysen²⁶): Die benutzten Einkristalle wurden aus Lösungen der Pulver in warmem Aceton durch langsames Abkühlen auf Raumtemp. gezüchtet. Sie besaßen die ungefähren Abmessungen $0.2 \times 0.3 \times 0.3$ mm (2a), $0.3 \times 0.3 \times 0.4$ mm (2b), 0.2 \times 0.5 \times 0.5 mm (3) und 0.2 \times 0.2 \times 0.3 mm (4). Die Messungen wurden auf den Vierkreis-Diffraktometern Syntex P21 der Universität Hamburg (2a, 3, 4) und Nicolet R3 der Universität Konstanz (2b) mit Mo- K_{α} -Strahlung unter Verwendung eines Graphit-Monochromators ($\lambda = 71.07$ pm) durchgeführt. 2a, 3 und 4 wurden bei 20°C untersucht; für 2b erfolgten die Bestimmung der Gitterkonstanten und die Datensammlung bei -47°C. Die Programmsysteme SHELXS-84²⁷, SHELX-76²⁸, PARST-7²⁹ und SCHA-KAL³⁰⁾ dienten für die kristallographischen Rechnungen sowie für die graphische Darstellung der Molekülmodelle. Gang und Ergebnisse der Strukturanalysen sind in den Tabellen 3-7 zusammengestellt.

Tab. 7. Lageparameter und äquivalente isotrope Temperaturfaktoren \hat{U}_{aq}^{a} von 4

Atom	x/a	у/Ъ	z/c	Uäa
	1 12925/21	0.23051(1)	0.27640(1)	0.0294(2)
RU	0 91877(5)	0.32615(1)	0.33528(4)	0.0371(4)
F1 D2	1 22162(6)	0.43581(5)	0.17668(4)	0.0378(5)
F2 D3	1 22476(5)	0.23663(5)	0.41030(4)	0.0372(4)
F J D 4	1 04414(6)	0.14434(5)	0.17474(4)	0.0399(5)
C1	1 3325(3)	0.1127(2)	0.2284(2)	0.038(2)
C1 C2	1 4262(2)	0.1541(2)	0.1395(2)	0.039(2)
	1 5442(2)	0 0747(3)	0 1046(2)	0 043(2)
	1 5741(3)	-0.0526(3)	0 1609(2)	0 049(2)
C4 75	1 4067(3)	-0.0320(3)	0 2493(2)	0 047(2)
C5 C6	1 2680/3)	-0.0188(2)	0 2804(2)	0 042(2)
C0 77	1 6330/33	-0.073(3)	0 0059(2)	0.056(3)
	1 6166(4)	0 2408(3)	0.3107(3)	0.070(4)
	0 8965(3)	0.5081(3)	0 3245(2)	0.051(3)
C3	0.0505(5)	0.5949(3)	0.2259/2)	0.056(3)
C10	1 1 2 9 4 (3)	0 5896(3)	0 2072(2)	0.052(3)
C11	0 8492(3)	0.2630(3)	0 4644(2)	0 047(2)
C1 2	0.0492(3)	0.2749(3)	0 5299(2)	0.052(3)
	1 0037/2)	0.2/43(3)	0.5230(2)	0.047(2)
015	0 7526(3)	0.1002(3)	0.3230(2)	0.058(3)
	0.7320(3)	0.3110(3)	0.2510(2)	0.050(3)
017	0.7477(3)	0.1779(4)	0.1710(2)	0.067(3)
C1 /	1 4125(3)	0.1775(4)	0.1653(2)	0.004(3)
C10	1 2000(4)	0 4963(3)	0.1033(2)	0.055(3)
C19 C20	1 2055(4)	0.4003(3)	0.0405(2) 0.4256(2)	0.059(3)
021	1 3705(3)	0.3033(3)	0.4250(2)	0.056(3)
022	1 0579(4)	0.0282(3)	0, 1102(2)	0.050(3)
C22	1 1115/2)	-0.0303(3)	0.2030(2)	0.056(3)
UZ 3 U	1 095(3)	0 112/2)	0.0433(2) 0.245(2)	0.050(3)
n	1.005(3)	V.112(3)	0.343(2)	0.030(0)

^{a)} Vgl. Legende zu Tab. 4.

CAS-Registry-Nummern

1: 100791-61-5 / 2a: 112021-69-9 / 2b: 112068-00-5 / 3: 112021-70-2 / 4: 112021-71-3 / RuCl_2(pp_3): 93254-23-0 / Benzol: 71-43-2 / Toluol: 108-88-3 / o-Xylol: 95-47-6 / m-Xylol: 108-38-3

- ¹⁾ XXVII. Mitteilung: M. Antberg, L. Dahlenburg, K.-M. Frosin, N. Höck, Chem. Ber. 121 (1988) 859, vorstehend. ²⁾ J. Y. Saillard, R. Hoffmann, J. Am. Chem. Soc. 106 (1984) 2006.
- ³⁾ P. Hofmann, M. Padmanabhan, Organometallics 2 (1983) 1273.
- ⁴⁾ Zusammenfassende Darstellung: A. H. Janowicz, R. A. Periana, J. M. Buchanan, C. A. Kovac, J. M. Stryker, M. J. Wax, R. G. Bergman, Pure Appl. Chem. 56 (1984) 13; aktuelle Übersicht über die vorliegende Primär- und Sekundärliteratur: R. A. Periana, R. G. Bergman, J. Am. Chem. Soc. 108 (1986) 7332
- ⁵ ⁵ ^(a) H. Kletzin, H. Werner, Angew. Chem. **95** (1983) 916; Angew. Chem. Int. Ed. Engl. **22** (1983) 873. ⁵⁶ H. Werner, K. Roder, J. Organomet. Chem. 281 (1985) C 38.
- ⁶⁾ R. H. Morris, M. Shiralian, J. Organomet. Chem. 260 (1984) C
- ⁷⁾ W. A. G. Graham, J. Organomet. Chem. 300 (1986) 81.
- ⁸⁾ C. Bianchini, D. Masi, A. Meli, M. Peruzzini, M. Sabat, F. Zanobini, Organometallics 5 (1986) 2557
- 9) C. Bianchini, A. Meli, M. Peruzzini, F. Zanobini, J. Chem. Soc., Chem. Commun. 1987, 971.
- ¹⁰⁾ C. Bianchini, M. Peruzzini, F. Zanobini, J. Organomet. Chem. 326 (1987) C 79
- ¹¹⁾ C. K. Gosh, W. A. G. Graham, J. Am. Chem. Soc. 109 (1987) 4726.
- ¹²⁾ M. Antberg, L. Dahlenburg, C. Prengel, Inorg. Chem. 23 (1984) 4170
- ¹³⁾ D. Werner, L. Dahlenburg, Z. Naturforsch., Teil B, 42 (1987) 1110.
- ¹⁴⁾ M. Antberg, L. Dahlenburg, J. Organomet. Chem. 312 (1986) C 67.
- ¹⁵⁾ M. Antberg, L. Dahlenburg, Angew. Chem. 98 (1986) 274; Angew. Chem. Int. Ed. Engl. 25 (1986) 260.
- ¹⁶ L. S. Patt, J. N. Shoolery, J. Magn. Reson. 46 (1982) 535.
 ¹⁷ M. Hackett, J. A. Ibers, P. Jernakoff, G. M. Whitesides, J. Am. Chem. Soc. 108 (1986) 8094.
- ¹⁸⁾ ^{18a} N. J. Cooper, M. L. H. Green, R. Mahtab, J. Chem. Soc., Dalton Trans. 1979, 1557. ^{18b} M. Berry, K. Elmitt, M. L. H.
- Green, J. Chem. Soc., Dalton Trans. 1979, 1950. ¹⁹⁾ C. A. Tolman, S. D. Ittel, A. D. English, J. P. Jesson, J. Am. Chem. Soc. 101 (1979) 1742.
- ²⁰⁾ M. V. Baker, L. D. Field, J. Am. Chem. Soc. 108 (1986) 7433.
- ²¹⁾ H. Werner, J. Gotzig, J. Organomet. Chem. 284 (1985) 73.
- ²²⁾ W. D. Jones, F. J. Feher, J. Am. Chem. Soc. 106 (1984) 1650.
- ²³⁾ H. Lehmkuhl, M. Bellenbaum, J. Grundke, J. Organomet. Chem. 330 (1987) C 23
- ²⁴⁾ J. E. Huheey, Inorganic Chemistry: Principles of Structure and Reactivity, 2. Aufl., S. 233, Harper & Row, New York 1978.
- ²⁵⁾ M. Antberg, L. Dahlenburg, Inorg. Chim. Acta 111 (1986) 73.
- ²⁶⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-52639, der Autoren und des Zeitschriftenzitats angefordert werden.
- 27) G. M. Sheldrick, SHELXS-84, Crystal Structure Solution, Göttingen 1984.
- ²⁸⁾ G. M. Sheldrick, SHELX-76, a Program for Crystal Structure Determination, Cambridge 1976.
- ²⁹⁾ M. Nardelli, PARST-7, a System of Fortran Routines for Calculating Molecular Structure Parameters from Results of Crystal Structure Analysis, Parma 1984.
- ³⁰⁾ E. Keller, SCHAKAL, ein Fortran-Programm für die graphische Darstellung von Molekülmodellen, Freiburg 1981.

[303/87]